Nutrition Care for Kidney Disease	Today's Dietitian SPRING SYMPOSIUM 2020
PRESENTER Victor Yu, PhD, MPH, RDN, BC-ADM	

None. #TDVirtualSymposium | Coday Diction |

2

Learning Objectives

- Describe the pathophysiology of the kidneys and the effects medical nutrition therapy have on improving the quality of life for those who suffer from CKD.
- 2. Identify the common types of dialysis.
- 3. Explain the nutrient needs of people with kidney disease from stages 1 to 5.
- 4. Discuss the importance of and implement nutrition assessments in your daily practice as it relates to CKD.

TDVirtualSymposium

Todayś Dietitian

Guidelines: *KDIGO and KDOQI*

- Kidney Disease Improving Global Outcomes 2017 update (KDIGO)
- Kidney Disease Outcomes Quality Initiative 2003 (KDOQI)

4

Our Agenda for Today

- Overview: Physiology of the Kidneys
- Types of Dialysis
- Nutrition Assessment in CKD for nationts
- Nutrition Management of Diabetes in CKD
- Mineral and Bone Disorders in CKD
- Anemia
- Putting it Into Practice

#TDVirtualSymposium

5

Physiology of the Kidneys

- Blood enters to provided oxygen and **excrete waste**
- **Major** functions:
- Excretory
- · Acid-base balance
- Endocrine
- Fluid and electrolyte balance

#TDVirtualSymposiun

Impairment of the Kidneys Can Lead To...

- Edema
- Uremia
- · Metabolic acidosis
- Hypertension
- Anemia
- Bone disease
- · Altering the response to drugs

#TDVirtualSymposium

7

Types of Dialysis

- In-center hemodialysis
- **Home** therapy
- Peritoneal dialysis may do this alone
- Hemodialysis requires a competent partner

8

Nutrition Assessment in CKD


- Weight of patientEstimated dry weightBio-impedence
- Albumin (21 days) vs. pre-albumin (3 days)
- Protein **needs**: 1.2 to 1.4 gm per kg
- Energy requirement:
- BEE
- 30-35 Kcal per kg
- · Adjusted weight

	ajabeea		,	
with Kidney Dioros	2015). Packet Guide to e: A Concise, Practical	Ansource for Com	prehensive	
	idney Disease. National			
Kotanko, P., Levin, technologies in dia	N. W., & Zhu, F. (2008). Nysis.	Current state of	sioimpedance	

Adjusted Weight

- **Controversial**, but current practice (KDOQI)
- Used if <95% or >115%
- (EDW-Std BW) x 0.32 (female) + Std BW
- (EDW-Std BW) x 0.38 (male) + Std BW

Combe, C., McCullough, C. P., Assoo, Y., Ginsberg, N., Marson, G. J., & Piler, T. & (2004). Globey disease acticones quality initiative (QCOQ) acids one acticones and particip patterns study (DOOPS): murition plant policy indicates, and practices. America journal of inflamy sitemates, 44, 124-46. McCano, L. (Ed.), (2015). Procine Guide to Nuction Assessment of the Patient with Kolley Sitemate. A Conside, Procincial Seasoure for Congreshmensia:

#TDVirtualSymposium

10

Example of a 100 kg Female

- Adjusted weight = 77.6 kg
- 30 Kcal per kg = 2,328 Kcal
- 1.4 gm protein per kg = 109 gm protein

TodayśDiet spring 2020

.

11

Assessing Dietary Intake

- Food records
- Food recall
- Food frequency
- Truth vs. what the patients **think** you want to hear
- Micronutrients renal vitamins

Todayś Dietitian

#TDVirtualSymposium

Lab Values

- Blood Urea Nitrogen (BUN) (reference range = 10-20 mg/dl)
- **Creatinine** a chemical waste product of creatine (reference range = 0.7-1.3 mg/dl)
- Creatine is a chemical the body makes to supply energy, mainly to muscles
- · Both will not exceed normal ranges until 60% of kidney function is lost

13

Measuring Kidney Function

- GFR vs. eGFR
- GFR: estimates how much blood passes through the glomeruli each minute
 - Glomeruli are **the tiny filters** in the kidneys that filter waste from the blood An excellent measure of the **filtering capacity** of the kidneys **Not** clinically feasible and cannot be measured directly

• eGFR – commonly used to help classify stages of CKD

eGFR = 186 x [Serum Creatinine] $^{-1.154}$ x Age $^{-0.203}$ x [1.212 if black] x [0.742 if female]

• Both GFR and eGFR are often used interchangeably in literature

14

Stages of CKD

GFR: measured in ml/minute/1.73 m² (average body surface area)

- 1 GFR of <90 ml/min/1.73 m² start treatment to slow progression and reduce CVD risk
- 2 GFR of 60-89 estimate progression
- **3** GFR of 30-59 evaluate and treat complications
- 4 GFR of 15-29 prepare for kidney replacement therapy
- **5** GFR of <15 kidney replacement therapy

odayś**Dietitian**

Nutrient	Stage 4	Hemodialysis	Peritoneal Dialysis	Nocturnal HD
Energy Kcal/kg	25-35	30-35	30-35	30-35
Protein g/kg	0.8	1.2-1.3	1.2-1.3	1.2-1.3
Sodium g/d	<2	<2	<2	<2
Potassium g/d	Unrestricted unless hyperkalemia	2.7-3.1	3-4; adjust prn	Adjust prn, usually unrestricted
Fluids ml/d	Usually unrestricted	750-1,500	Maintain balance	Maintain balance
Phosphorous mg/d	800-1,000	800-1,000	800-1,000	800-1,000

Patients with Diabetes on Dialysis: *Nutrition Care Challenges*

- Classifications and levels of **prevention**
- Effects of dialysis on diabetes management
- Effects of diabetes on **dialysis**
- Education: diabetic diet or renal diet?
 - Need to help patients dispel misconceptions

TodayśDietitiar SPRING SYMPOSIUM 2020

#TDVirtualSymposium

17

Diabetes: Classifications and Preventions

- Three main classifications
- Levels of prevention: primary, secondary, and tertiary
- Tertiary prevention
- Postpone Progression
- Prevent loss of limbs and eyesight

Diabetes Management: Effects of Dialysis

- In-center treatment schedule
- Dialysis and **blood glucose**
- Dialysis and the **metabolic** environment
- · Hypoalbuminemia

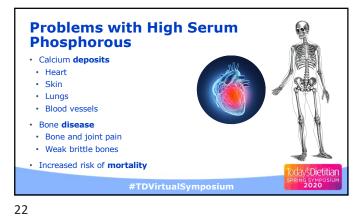
#TDVirtualSymposium

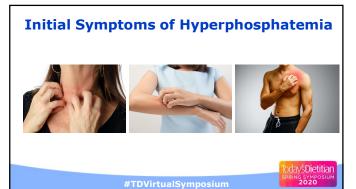
19

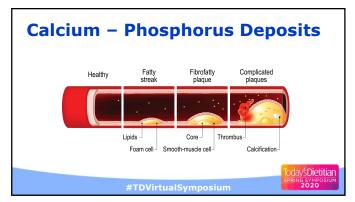
Effects of Diabetes on Dialysis

- Gastroparesis
- · Peridontal disease
- Hyperglycemia and fluid
- Bone and mineral management

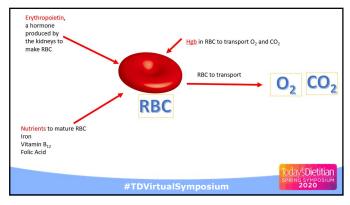
#TDVirtualSymposium


20


Bone and Mineral Disorders


- Phosphorous, calcium, and vitamin D
- Phosphorous
- 800 to 1,000 mg daily
- Absorption: organic phos vs. inorganic phos
- High serum phos ⇒ calcium from bones to serum
- Phosphorus binders
- Role of kidneys with vitamin D

McConn, L. (Ed.), (2015). Pocian Cuide so Menchion Assussment of the Petition Letter with Atlantic Assussment of the Petition Library Diseas National Actions, Produced Resource for Comprehensive Metrition Care in History Diseas National National Foundations of the Comprehensive States of the Comprehensive S


26

Anemia Anemia - Greek word meaning lack of blood Need RBC to transport 0₂ and CO₂ Need **erythropoietin** (EPO) to make RBC in bone marrow

- EPO is a hormone secreted by the kidneys
- + Need hemoglobin in RBC to transport \textbf{O}_2 and \textbf{CO}_2
- Need **nutrients** to mature RBC to make hemoglobin
 Iron
- Vitamin B₁₂
 Folic Acid

#TDVirtualSymposium

Causes of Anemia

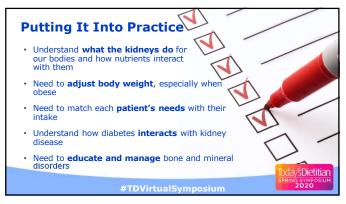
- Impaired **destruction** blood loss
- Impaired production
- RBC not being produced **enough**
- EPO and bone marrow
- RBC are produced, but not mature insufficient nutrients

TodayśDietitian

#TDVirtualSymposium

29

Nutrition for Anemia


- Iron, Vitamin B12, and Folic Acid
- Iron
- Usually given IV during treatment
- May use oral iron supplements
- May educate on increasing iron intake in food
- $\bullet \ \ \, B^{12} \ and \ Folic \ Acid$
- Renal vitamins (without minerals)
- Educate on food sources

McCare, L. (Ed.). (2015). Pociet Guide no Natrition Assessment of the Patient with Kidery Disease: A Canolos, Practical Resource for Comprehensive Nucrition Core in Kidery Disease: Allocation Kidery Control. (2015). Considered Kidery Control. (2015). Control Kidery Control. (2015). Control Kidery, D., Improving, G. O. K. C. M., & Work, G. (2017). KIDEG 2017 Clinical Practice Guidelies Lipitate for the Sugnessi, (valuation), Provention, and Visuational Control Kidery Control Control

