Exclusive Webinar Presentation

The Latest Science on the Many Health Benefits of Tree Nuts: Type 2 Diabetes, Cardiovascular Disease and Weight Management

Complimentary 1-Credit Continuing Education Webinar

Nuts and Clinical Trials, Mechanisms and Recommendations

Penny Kris-Etherton, PhD, RD, FAHA

2

- Affiliations: Pennsylvania State University, AHA Nutrition Committee
- **Disclosure:** Dr. Kris-Etherton has no disclosures for this program.

Outline

- 1. Epidemiologic and clinical trial evidence in support of current dietary recommendations for nuts
- 2. Mechanisms that account for the cardiometabolic benefits of nuts
- 3. Dietary recommendations for nuts
- 4. Summary

Ranked	l by Disability-Adjusted Life Year	rs (DALYs)
Rank	1990	2010
1	Lower respiratory infection	Ischemic heart disease
2	Diarrhea	Lower respiratory infection
3	Preterm birth	Stroke
4	Ischemic heart disease	Diarrhea
5	Stroke	HIV
6	COPD	Low back pain
7	Malaria	Malaria
8	Tuberculosis	COPD
9	Protein, energy malnutrition	Preterm birth
10	Neonatal encephalitis	Road injury
11	Low back pain	Major depressive disorders
12	Noad injury	Neonatal encephalitis

		_

Factors	actors Causing the Greatest "Loss of Health"						
Rank	1990	2010					
1	Low body weight	High blood pressure					
2	Household air pollution	Smoking					
3	Smoking	Alcohol					
4	High blood pressure	Household air pollution					
5	Lack of breastfeeding	Low fruit consumption					
6	Alcohol High body mass index						
7	Ambient particulate matter High fasting plasma glucose						
8	Low fruit consumption	Low body weight					
9	High fasting plasma glucose	Ambient particulate matter					
10	High body mass index	Inactivity					
11	Low iron intake	High salt intake					
12	High salt intake	Low nut/seed consumption					

Healthy Dietary Patterns

- 2015 DGAC identified a healthy dietary pattern as:
 - High in vegetables, fruits, whole grains, low-fat dairy, seafood, legumes, and nuts
 - Moderate in alcohol
 - Lower in red and processed meats
 - Low in added sugars (not more than 10% of total energy)
 - Low in refined grains
- The DGAC also recommends that, as part of a healthy dietary pattern:
 - Saturated fat not exceed 10% of total energy (emphasizing substitution of polyunsaturated fats for saturated fats)
 Limiting sodium intake to not more than 2300 mg per day
 Calories to meet energy needs and to achieve and maintain ideal body weight
- · Associated with more favorable environmental outcomes.

(2015 DGAC: Meeting 7)

Actions for Individuals and Families/Households

- Improve food & menu choices, modify recipes, and watch portion sizes.
- Include more vegetables, fruits, whole grains, seafood, nuts, legumes, low/non-fat dairy.
- Reduce red and processed meat, refined grains, added sugars, sodium, and saturated fat. Substitute SFA with PUFA and replace solid animal fat with vegetable oils and nuts.

(USDA, Scientific Report of the 2015 DGAC, 2015)

7

Chapter 4: Foods and Nutrients to Increase

E Key Recommendations

Individuals should meet the following recommendations as part of a healthy eating pattern and while staying within their calorie needs.

Increase vegetable and fruit intake.

Bat a variety of vegetables, especially darkgreen and red and orange vegetables and beans and peas.

Consume at least half of all grains as whole grains. Increase whole grain intake by replacing refined grains with whole grains.

Increase intake of fat free or low-fat milk and milk products, such as milk, yogurt, cheese, or fortified soy beverages.⁵⁸ Choose a variety of <u>protein foods</u>, which include seafood, lean meat and poultry, eggs, beans and peaks, soy products, and unsalted <u>nuts and seeds</u>. Increase the amount and variety of seafood consumed by choosing seafood in place of some meat and poultry.

Replace protein foods that are higher in solid fats with choices that are lower in solid fats and calories and/or are sources of oils. Use oils to replace solid fats where possible.

Choose foods that provide more potassium, dietary fiber, calcium, and vitamin D, which are nutrients of concern in American diets. These foods include wegetables, fruits, whole grains, and milk and milk products.

9

(USDA, Dietary Guidelines for Americans, 2010)

CVD Benefits of Nut & Peanut Consumption

Frequency of Nut Consumption Reduces ¹⁰ CHD Risk in a Dose-Response Manner

Results are from four epidemiologic studies

(USDA, *Scientific Report of the 2015 DGAC*, 2015; Sabaté and Ang, *Am J Clin Nutr*, 2009)

Walnut Consumption is Associated with Lower Risk of Type 2 Diabetes in Women

Frequency of Walnut Consumption

	Never/ Rarely	< 1 Sv/Wk	1 Sv/Wk	≥ 2 Sv/Wk	P-Trend
Multivariate Model + BMI	1.00	0.96 (0.90-1.02)	0.87 (0.75-1.01)	0.76 (0.62-0.94)	0.002

(Pan et al, JNutr, 2013)

		Total ^o		Men ^c		Women ^c
Total Mortality, Quintile	No. of Deaths	Adjusted HR (95% CI)	No. of Deaths	Adjusted HR (95% CI)	No. of Deaths	Adjusted HR (95% Cl)
Nut Intake Only (SCCS)						
1	1767	1 [Reference]	791	1 [Reference]	976	1 [Reference]
2	1543	0.92 (0.85-0.99)	955	0.88 (0.80-0.98)	588	0.83 (0.74-0.93)
3	801	0.81 (0.74-0.88)	352	0.76 (0.66-0.87)	449	0.84 (0.75-0.95)
4	1190	0.78 (0.72-0.84)	716	0.72 (0.64-0.81)	474	0.77 (0.68-0.87)
5	955	0.73 (0.67-0.79)	518	0.70 (0.62-0.79)	437	0.75 (0.66-0.85)
P value for trend		<.001		<.001		.007
Peanut Intake (SMHS/SWH	5)					
1	2328	1 [Reference]	1035	1 [Reference]	1293	1 [Reference]
2	1121	0.81 (0.76-0.88)	282	0.87 (0.76-1.00)	839	0.80 (0.73-0.87)
3	1393	0.78 (0.73-0.84)	467	0.77 (0.69-0.87)	926	0.79 (0.72-0.86)
4	1786	0.81 (0.76-0.86)	816	0.82 (0.75-0.91)	970	0.80 (0.73-0.87)
5	1516	0.83 (0.77-0.88)	787	0.83 (0.75-0.91)	729	0.83 (0.75-0.91)
P value for trend		<.001		<.001		<.001

(Luu et al, JAMA Intern Med, 2015)

2013;368:1279-1290 The NEW ENGLAND JOURNAL of MEDICINE

13

ORIGINAL ARTICLE

Primary Prevention of Cardiovascular Disease with a Mediterranean Diet

Ramón Estruch, M.D., Ph.D., Emilio Ros, M.D., Ph.D., Jordi Salas-Salvadó, M.D., Ph.D., Maria-Isabel Covas, D.Pharm., Ph.D., Dolores Corella, D.Pharm., Ph.D., Fernando Arós, M.D., Ph.D., Enrique Gómez-Gracia, M.D., Ph.D., N., Valentina Ruiz-Gutiérrez, Ph.D., Miquel Fiol, M.D., Ph.D., José Lapetra, M.D., Ph.D., Rosa Maria Lamuela-Raventos, D.Pharm., Ph.D., Luits Serra-Maigem, M.D., Ph.D., Xavier Pintó, M.D., Ph.D., José Basora, M.D., Ph.D., Husser-Maigem, M.D., Ph.D., José V. Sorli, M.D., Ph.D., José Alfredo Martínez, D.Pharm, M.D., Ph.D., Hol, Miguel Angel Martinez-Gorzialez, M.D., Ph.D., for the PREDIMED Study Investigators*

Primary Prevention of Cardiovascular Disease ¹⁵ with a Mediterranean Diet: The PREDIMED Trial

- Participants (n = 7447) were randomly assigned to:
 - Mediterranean diet supplemented with extra-virgin olive oil (1 L/week)
 Mediterranean diet supplemented with mixed nuts (30 g/d; 15 g
 - walnuts; 7.5 g almonds; 7.5 g hazelnuts)
 - Control diet (advice to reduce dietary fat)
- Participants received quarterly individual and group education sessions and free extra-virgin olive oil or mixed nuts.
- The primary end point was the rate of major cardiovascular events (myocardial infarction, stroke, or death from cardiovascular causes). The trial was stopped after a median follow-up of 4.8 years rather than continuing for 6 years, as planned.

(Estruch et al, N Engl J Med, 2013)

Intake of Energy and Nutrients at the End of the Trial by Study Group

Energy, kcal 2172 2229 1960 CHO, % E 40 40 44 Fat, % E 41 42 37 SFA, % E 9 9 9 MUFA, % E 22 21 19 PUFA, % E 6 8 6 Linoleic acid, g/d 12 16 10	Variable	MedDiet + EVOO	MedDiet + Nuts	Control
CHO, % E 40 40 44 Fat, % E 41 42 37 SFA, % E 9 9 9 MUFA, % E 22 21 19 PUFA, % E 6 8 6 Linoleic acid, g/d 12 16 10	Energy, kcal	2172	2229	1960
Fat, % E 41 42 37 SFA, % E 9 9 9 MUFA, % E 22 21 19 PUFA, % E 6 8 6 Linoleic acid, g/d 12 16 10	CHO, % E	40	40	44
SFA, % E 9 9 MUFA, % E 22 21 19 PUFA, % E 6 8 6 Linoleic acid, g/d 12 16 10	Fat, % E	41	42	37
MUFA, % E 22 21 19 PUFA, % E 6 8 6 Linoleic acid, g/d 12 16 10	SFA, % E	9	9	9
PUFA,% E 6 8 6 Linoleic acid, g/d 12 16 10	MUFA, % E	22	21	19
Linoleic acid, g/d 12 16 10	PUFA, % E	6	8	6
	Linoleic acid, g/d	12	16	10
ALA, g/d 1.3 1.5 1.3	ALA, g/d	1.3	1.5	1.3
Marine n-3 FA, g/d 0.9 0.8 0.7	Marine n-3 FA, g/d	0.9	0.8	0.7

(Estruch et al, N Engl J Med, 2013)

16

17

PREDIMED Trial: The Incidence of Acute Myocardial Infarction, Stroke, and Death from Cardiovascular Causes by Treatment

Recent Evidence from PREDIMED: Further Benefits of Olive Oil and Nuts

19

Both Med diet groups

- Decreased diastolic BP versus the control. (Toledo et al, BMC Med, 2013)
- Improved cognition measured by MMSE and CDT scores. (Martinez-Lapiscina et al, J Neurol Neurosurg Psychiatry, 2013)
- Decreased systolic & diastolic blood pressure, total cholesterol and LDL-C, fasting blood glucose, and inflammatory biomarkers. (Domenech et al, Hypertension, 2014)

Recent Evidence from PREDIMED: Further Benefits of Olive Oil and Nuts

21

Benefits of nuts

- Increased nut consumption reduced risk of mortality (HR 0.37;95% CI 0.22 to 0.66). (Gausch-Ferré et al, *BMC Med*, 2014)
- Increased nut consumption reduced risk for obesity, MetS, diabetes, and abdominal obesity. (Ibarrola-Jurado et al, *PLoS One*, 2013)
 Decreased progression of internal carotid intima-media thickness and plaque. (Sala-Vila et al, *Arterioscler Thromb Vasc Biol*, 2014)
- Benefits of extravirgin olive oil
 - Decreased risk of atrial fibrillation versus the control group. Nuts had no effect. (Martinez-González et al, *Circulation*, 2014)

_

Clinic Visit: Blood draw, blood pressure, DXA, waist circumference

Step 1 diet + almonds OR Step 1 diet without almonds (control)							
Breakfast:	Snack:	Lunch:	Dinner:				
 2% milk Oatmeal Apple juice English muffin Blueberries Margarine 	1.5 oz. almonds OR 106 g banana muffin vs	 White bread Deli turkey Provolone cheese Mayonnaise Pretzels Yogurt Pear 	 Chicken parmesan Broccoli Dinner roll Margarine 				

25

26 Almonds Improve Lipids and Lipoproteins 20 10 mg/dL 0 . 1 I a. I Almond -10 Control b. b. -20 a. a. a. -30 Non-HDL-C Total Chol LDL-C HDL-C TG Different lowercase letters within variables indicate treatment differences, P <0.05 *Significantly different than baseline, P <0.05

Remnant Lipoproteins were Improved

28

High Remnant Lipoprotein Predicts Recurrent Cardiovascular Events on Statin Treatment After Acute Coronary Syndrome

(Nguyen et al, *Circ J*, 2014)

Conclusions

32

33

- Consumption of almonds (1.5 oz./d), in a cholesterollowering diet, provides further total and LDL-cholesterol reductions
- Almond consumption improves lipid and lipoprotein profile which is predictive of cardiovascular disease risk
- Almonds have a beneficial effect on regional body composition, decreasing both abdominal and leg adiposity

Effects of Walnuts and Flax on Cholesterol, Vascular Function, and Cardiovascular Response to Stress

Funded by the California Walnut Growers (Zhao et al, *J Nutr*, 2004; West et al, *J Am Coll Nutr*, 2010)

34 Nutrient Profiles of Experimental Diets:

% of calories as:	Average American Diet	Walnuts + Walnut Oil	Walnuts, Walnut Oil, + Flax Oil
Carbohydrate	50	47	46
Protein	16	16	16
Total Fat	35	37	38
 Saturated 	13	9	8
 Monounsaturated 	13	12	12
Polyunsaturated	9	16	17
Linoleic acid (n-6)	8	13	11
α-linolenic acid (n-3)	1	4	7
Cholesterol (mg/d)	311	304	305

One meal consumed on-site each day, all other meals and snacks were packed for take-out.

Study Des Randomized	sign Cross-C)ver Co	ontrolled F	eeding	35
6 weeks American Diet	2 weeks	6 Wali	weeks nuts + oil	2 weeks	6 weeks Walnuts + oil + flax
	C		<u>All meals r</u> <u>kitchen</u> – I maintaine included t walnuts (3 <i>For the hig</i> <i>of flax oil</i>	orepared body weig d. Each e he same a '7g) and v gher dose was adde	in a metabolic ght was experimental diet amount of walnut oil (15 g). ALA diet, 19 g/d d.

(West et al, **J Am Coll Nutr**, 2010; Zhao et al, **J Nutr**, 2004;)

36

on CVD Risk Factors								
	BP (SBP/DBP)	LDL-C	FMD (Endothelial Function)	CRP				
Walnut & Flax Diet ^{1,2}	- 3 / -3*	- 14%*	+ 34%*	- 75%*				
Walnut Diet ¹	-3 / -3*	- 14%*	+ 10%	- 45%				

* = significant change vs. control diet

Effects of Walnuts and Flaxseed

2400 kcal dies 37.3 grams of walnuts (~1.3 oz.) 15.3 grams of walnut oil (~1 thep.)

(Zhao et al, J Nutr, 2004; West et al, J Am Coll Nutr, 2010)

Acute Consumption of Whole Walnuts (85 g) Increases Cholesterol Efflux

"serum from subjects after whole wainut consumption; serum was added as an efflux inducer to culture media after ABCA1 upregulation by cAMP. Assays conducted by Dr. George Rothblat.

(Berryman et al, J Nutr, 2013)

38

(Rohatgi et al, N Engl J Med, 2014)

Pistachio Nut Consumption Modifies Systemic Hemodynamics, Increases Heart Rate Variability, and Reduces Ambulatory Blood Pressure in Well-Controlled Type 2 Diabetes: a Randomized Trial Katheria A. Sawar, PRi; Cindy E. McSun MS; In St. Uterv. MBS; Peru, W. Krischertan, PRIO, Ryshie J. Wet, PM

40

Background—Managing cardiovascular risk factors is important for reducing vascular complications in type 2 diabetes, even in individuals who have achieved glycemic control. Nat consumption is associated with reduced cardiovascular risk; however, there is made vidence askin to the effect of nucl on blood pressure (gr), and limited research on the underlying hemodynamics. This study assessed the effect of pistachic consumption on BP, systemic hemodynamics, and heart rate variability in adults with wellcontrolled type 2 liabetes.

controlled type 2 diabetes. Methods and Reuros — We enrolled 30 adults (40 to 74 years) with type 2 diabetes in a randomized, crossover, controlled feeding study. After a 2-week run-in period, participants consumed a low-fac control (det (27% ft)) containing low-fat/hip/eartib/yetims study. After a 2-week run-in period, participants consumed a low-fac control (det (27% ft)) containing low-fat/hip/eartib/yetims marks and a moderate-fat det (133% ft) containing pistorical (2006 of total method) for 4 weeks each, separated by a 2-week weahout. Following each det period, we assessed BP, systemic hemodynamics, and heart rate and ading passes did not differed between metal atorse, and, and a subset of participants (pr-21), 24-our annukatory (PP, BP) at test and ading passes did not differed between (3.12-23, Pr-0.002), and improved some measure of heart rate with the presistes at multicative participant and participants (a.12-24, mm tb; (P-0.044), following the particulo (det, with the greatest induction belaved during aleeg (-57-22-46 mm tb; P-0.044), induction pitchicks expected by a state and ading participants and belaved during aleeg (-57-22-46 mm tb; P-0.044), indicatest fat did totachicks and be participants and belaved during aleeg (-57-22-46 mm tb; P-0.044), indicatest fat did totachicks and belaved by alexander (b) following the participant and belaved by alexanders for did totachies fat advectors fat did totachies fat did to

Conclusions—A moderate-fat diet containing pistachios modestly improves some cardiovascular risk factors in adults with wellcontrolled type 2 diabetes.

Clinical Trial Registration—URL: www.clinicaltrials.gov. Unique identifier: NCT00956735. (J Am Heart Assoc. 2014;3:e000873 dol: 10.1161/JAHA.114.000873)

Key Words: blood pressure • heart rate variability • hemodynamics • nutrition • type 2 diabetes mellitus

Ambulatory blood pressure monitoring is an increasingly important⁴² prognostic parameter for cardiovascular disease risk.

- Allows BP readings to be taken across a 24-hour period.
- Using ambulatory blood pressure monitoring to rule out white-coat hypertension prevents patients from being prescribed unnecessary antihypertensive medications.
- Ambulatory blood pressure monitoring also allows measurement of nocturnal BP, an increasingly important prognostic parameter for cardiovascular disease magazet

Variables	Control		1PD*		2PD†		
	LS mean	SE	LS mean	SE	LS mean	SE	(diet)
α-2 HDL (mmol/l)	1.41	0.06	1.39	0-06	1.50	0.06	0.056
α-1 HDL (mmol/l)	0.47	0.03	0-48	0.03	0.53	0.03	0.073
Lipoprotein(a) (µmol/l)	0.89	0.01	0.90	0.01	0.89	0.01	0.782

American Heart Association 2020 Goals (Dietary)

	45	

Primary	
Fruits & Vegetables	≥ 4.5 cups/day
Fish	\geq two 3.5 oz. servings/week (preferably oily fish)
Fiber-Rich Whole Grains	(≥ 1.1 g of fiber/10 g of CHO≥ three 1 oz. equivalent servings per day)
Sodium	< 1500 mg/day
Sugar-Sweetened Beverages	≤ 450 kcal (36 oz.)/week
Secondary	
Nuts, Legumes, & Seeds	≥ 4 servings/week
Processed Meats	none or ≤ 2 servings/week
Saturated Fat	< 7% of total energy intake

(Lloyd-Jones et al, Circulation, 2010)

Summary

- There are many dietary recommendations for nuts
- Epidemiologic and clinical trial evidence supports dietary recommendations for nuts
- Multiple mechanisms account for the cardiometabolic benefits of nuts, including benefits on chronic diseases such as CVD, diabetes, metabolic syndrome and biomarkers for disease risk, i.e., lipids/lipoproteins, remnant lipoproteins, cholesterol efflux, blood pressure, visceral adiposity, among others

46

47

Nuts and Energy Balance

Richard D. Mattes, MPH, PhD, RD

- Affiliations: Purdue University and West Lafayette, IN, USA
- Disclosure: Dr. Mattes has received grants/research support and honorarium from Almond Board of California.

Level 1 Epidemiological Evidence

	Nut	Subjects	Duration (months)	Weight Change
Abby, 1994	Almond/Macadamia	16	0.75	NS
Spiller, 1998	Almond	48	1	NS
Fraser, 2002	Almond	81	6	NS
Hyson, 2002	Almond	22	1.5	NS
Jenkins, 2002	Almond	27	1	L
Lovejoy, 2002	Almond	20	1	+<1Kg
Spiller, 2003	Almond	38	1	NS
Sabate, 2003	Almond	25	1	NS
Wein, 2003	Almond	65	6	L
Hollis, 2007	Almond	20	2.5	NS
Curb, 2000	Macadamia	30	1	NS
Garg, 2003	Macadamia	17	1	L
Kris-Etherton, 1999	Peanut	22	0.75	NS
Alper, 2002	Peanut	15	4.75	NS
Morgan, 2001	Pecan	19	2	NS
Rajaram, 2001	Pecan	23	1	L
Edwards, 1999	Pistachio	10	0.75	NS
Almario, 2001	Walnut	18	1.5	NS
Sabate, 1993	Walnut	19	2	L
Zambon, 2000	Walnut	49	1.5	NS
lwamoto,2002	Walnut	80	1	L
Sabate, 2005	Walnut	90	6	+0.4Kg

Level 3 Mechanistic Evidence

53

54

Mechanisms

- Appetite
- Energy yield
- Energy Expenditure

Appetite

Appetitive Effects of Nuts

• Suppress Hunger: Eating initiation

• Fullness: Meal size

 Suppress Desire to eat: Eating in the absence of hunger

55

56

57

Healthy Snacks

Can the right snack have an impact on satiety and reduce energy intake?

A (28g almonds)

B (42g almonds)

Factors Contributing to Satiety

60

- Energy
- Fatty Acids
- Rheology
- Macronutrient Profile
- Fiber
- Cognition

The Satiety value of nuts appears to stem from the synergy of their components

Dietary Compensation				
Study	Nut	% Compensation		
Fraser et al., 2002	Almonds	54%, 75%		
LoveJoy et al., 2002	Almonds	63%		
Hollis & Mattes	Almonds	76%		
Curb et al., 1992	Macadamia	58%, 113%		
Kirkmeyer & Mattes, 2000	Peanuts	104%		
Alper & Mattes, 2001	Peanuts	66%		
Almario et al., 2001	Walnuts	96%		
Abbey et al., 1994	Walnuts	55%		
Tey et al., 2011	Hazelnuts	100%		

63

61

62

100 kcal Daily Load
<u>70</u> kcal – Dietary Compensation
<u>30</u> kcal

Energy Expenditure

64

Figure 1 – Median REE for lean and overweight participants at baseline and after 8 weeks of peanut oil ingestion. L = lean, O = overweight, M = male, F = female, T = total subjects (male and female). Medians with different letters are significantly different in the same group (p<0.01)

100 kcal Daily Load
 - 70 kcal – Dietary Compensation
 30 kcal

67

68

- 10 kcal Increased RMR 20 kcal

Absorption Efficiency

Almond Particle Size after Mastication ⁷² By Number of Chews

⁷⁴ **100** kcal Daily Load **-70** kcal – Dietary Compensation **30** kcal **-10** kcal – Increased RMR **20** kcal **-20** kcal – Fecal Loss **~0**

	Component of Energy Balance	% Almond Energy Dissipated
Predicted body weight gain (kg)	3.1	
Actual body weight gained (kg)	0	
Dietary compensation (KJ)	802	74
Fecal excretion (KJ)	84	7
Energy Expenditure (KJ) REE TEF Physical Activity Total Energy (DLW)	184 13 -79 180	13 .01 -6 14
Total Energy Explained		95

75

Nuts and Energy Balance

Study Design

- Four-week randomized, controlled, parallel-arm
- Healthy adults with increased risk for T2DM
 - 18 60 y-o, non-diabetic
 - Overweight (BMI>25) and/or family history
- Five study groups:
 - Control (CL), Meal (BF & LN), Snack (MS & AS)

	906 inte	adults expres rest and scree	ised ined	
	Eli	gible participa	nts	
		N=150	\sim	
Control (CL) n=30	Breakfast (BF) n=30	AM snack (MS) n=30	Lunch (LN) n=30	PM snack (AS) n=30
Withdrawals n=3	Withdrawals n=2	Withdrawals n=2	Withdrawals n=4	Withdrawals n=2
	\square	\square	\square	
Completed n=27 7M & 20F	Completed n=28 9M & 19F	Completed n=28 13M & 15F	Completed n=26 10M & 16F	Completed n=28 9M & 19F

79

Almond Consumption and Energy Intake

Summary

83

84

- Epidemiological, Clinical and mechanistic data indicate nuts pose limited threat to positive energy balance
- Nuts have strong satiety properties and elicit strong compensatory dietary compensation
- Energy absorption from nuts is less than predicted
- Nuts are associated with elevated resting energy expenditure
- Nuts may be a useful snack option

Nuts and Healthy Diet

Sharon Palmer, RDN

Disclosure: Sharon provides consultant services for a select group of organizations, including American Pistachio Growers, Daisy Brand Cottage Cheese, SOYJOY, and Tomato Product Wellness Council.

What Are Tree Nuts?

Dry fruits with one seed in which the ovary wall becomes hard at maturity:

- Almonds
- Walnuts
- Cashews
- Pecans
- Pistachios
- Hazelnuts
- Brazil nuts
- Macadamia nuts
- Pine nuts

85

Nutritional Attributes for Nuts

- Nutrient Dense
- Healthy Fats
- Protein
- Fiber

Phytochemicals

89

90

Nutrient Dense

Nature's unique treasure: packed with healthy fats, fiber, protein, vitamins, minerals, and phytochemicals in a small serving.

Healthy Fats

- High total fat content: 46 76% fat
- Ample unsaturated fats: monounsaturated and polyunsaturated fats
- Low in saturated fat (4-16%)
- Helps lower LDL cholesterol; reduce risk of cardiovascular disease
- Omega-3 fatty acids (ALA) also present in walnuts—highest content in all edible plants

(Ros, Nutrients, 2010)

91

92

93

Protein

- Good plant-based high quality protein source (about 25% of energy)
- Some richer in protein: almonds, pistachios 6 grams per ounce
- High in L-Arginine: amino acid converted to nitric oxide in the body; helps keep blood vessels elastic, thereby reducing the risk of atherosclerosis, found in walnuts, almonds, cashews, and pistachios

(Ros, Nutrients, 2010)

Fiber

- Fiber (4-11 grams per 100 grams); 5-10% DV for fiber in one standard serving; primarily insoluble fiber
- Plant sterols and stanols, components of plant membranes resemble chemical structure of cholesterol; only obtained through plant sources; lower blood cholesterol by blocking its absorption by competing for cholesterol in gut

(Ros, Nutrients, 2010; International Food Information Council Foundation, 2014)

Vitamins and Minerals

Range of micronutrients, depending on nut:

- vitamins B6, E (important source; almonds, hazelnuts) and K, riboflavin, thiamin
- copper, manganese, magnesium, iron, selenium, zinc, calcium, phosphorus

(USDA, National Nutrient Database, 2015)

Phytochemicals

- Bioactive compounds in plants, possess antioxidant and anti-inflammatory activity
- Concentrated in nuts; high in antioxidant capacity; i.e. walnuts and pistachios rank high
- Range:
 - flavonoids (quercetin, kaempferol, rutin)
 - phenolic compounds (proanthocyanidins)
 - isoflavonoids
 - carotenoids (lutein, zeaxanthin in pistachios)
 - stilbenes (resveratrol in pistachios)

(Ros, Nutrients, 2010)

94

95

Recommended Serving

- Research supports: 1 1 ½ ounces per day, about one handful
- FDA Qualified Health Claim

"Scientific evidence suggests but does not prove that eating 1.5 ounces per day of most nuts, as part of a diet low in saturated fat and cholesterol, may reduce the risk of heart disease." (US FDA, 2014)

 $^\circ\,$ Nuts and seeds recommended 4 – 7 ounces per week by DGAC 2015

RDs Can Help!

Adding a daily dose of nuts is good nutrition advice:

- For all age groups, from young to old
- Perfect easy, whole foods snack
- No fuss, preparation, minimal packaging
- Great for packing away in lunchboxes, backpacks, and purses
- Healthy plant-based protein source

97

98

RDs Can Help!

Adding a daily dose of nuts is good nutrition advice:

- Health benefits, such as CVD, weight management, and blood glucose control
- Nutrient-rich eating
- Fits in many meal plans, from gluten-free to vegetarian
- Nuts are healthy indulgence, they make everything feel and taste better: salads, yogurts, cereals, sandwiches, baked goods, and beyond

Getting Nutty on the Menu

- 1. Breakfast
- 2. Lunch
- 3. Dinner
- 4. Snacks

Breakfast

102

101

- Add chopped nuts to breakfast cereal, such as oatmeal, porridge, granola, or cold cereal
- Add chopped nuts to quick breads, such as pecan pancakes, walnut waffles, blueberry hazelnut muffins, or pistachio orange biscuits
- Sprinkle nuts, such as almonds, pistachios or brazil nuts over Greek yogurt with fruit for an easy breakfast
- Spread nut butter, such as almond, walnut, or cashew butter over toast, bagels, or English muffins

Lunch

- Use nut butter, such as almond or cashew butter, as a spread on sandwiches instead of margarine or mayo; even savory sandwiches!
- Toss nuts into salads, such as romaine salad with toasted walnuts, kale salad with almonds, or 3-bean salad with pinenuts
- Make a simple meal of cottage cheese, seasonal fruit and nuts, such as pistachios, almonds, macadamia nuts and pecans
- Enjoy an Asian vegetable stir-fry with a sprinkling of nuts, such as almonds

Dinner

104

- Add nut butter to savory sauces, such as curry, mole, or Thai sauce
- Sprinkle nuts, such as pistachios, macadamia, walnuts, or almonds into sautéed vegetables, such as spinach, asparagus or Brussels sprouts, as a side dish
- Top lean proteins with herbs and chopped nuts, such as pine nuts, hazelnuts, cashews, or pistachios and roast
- Whiz up a pesto sauce with basil, garlic, EVOO, and nuts, such as almonds, pine nuts, pistachios or walnuts
- Mix finely diced nuts into bread crumb toppings for casseroles, such as macaroni and cheese, broccoli cheese, or green bean casserole for a nutritious crunch

Dinner

105

- Press chopped nuts, such as walnuts, pecans and hazelnuts into veggie-burgers or nut-loafs as a meat alternative
- Toss cooked whole grain pasta with tomatoes, EVOO, garlic and nuts, such as pinenuts, pistachios, and walnuts
- Stir chopped nuts, such as almonds, pinenuts, and Brazil nuts into whole grain side-dishes, such as rice pilaf, couscous, and farro
- Soak cashews overnight and blend into a cashew cream for cooking

Snacks

106

- · Dip apples in nut butter and top with coconut flakes and dark chocolate chips/raisins
- Serve vegetable crudités with nut butter
- Roast raw nuts, such as cashews, almonds or walnuts in the oven with EVOO, rosemary, sea salt and cayenne pepper
- Sprinkle chopped nuts, such as pistachios, hazelnuts, or macadamia nuts on top of plain non-fat Greek yogurt with herries
- · Add nuts such as almonds, hazelnuts, cashews or walnuts to smoothies with fruit, milk and greens

Credit Claiming

107

You must complete a brief evaluation of the program in order to obtain your certificate. The evaluation will be available for 3 months; you do not have to complete it today.

Credit Claiming Instructions:

- Go to <u>www.CE.TodaysDietitian.com/TreeNuts</u> OR Log in to <u>www.CE.TodaysDietitian.com</u> and go to My Account→ My Activities→ Courses (in Progress) and click on the webinar title.
- ${\rm Click}\ {\rm ``Continue''}\ {\rm on\ the\ webinar\ description\ page.\ Note:\ You\ must be logged-in to see the "Continue"\ button.$ 2.
- Select the Evaluation icon to complete and submit the evaluation. 3. 4.
- Download and print your certificate.

Please Note: If you access the Evaluation between 3-4 pm ET on 3-19 you may experience a slow connection due to a high volume of users