

TODAY'S DISCUSSION AND LEARNING OBJECTIVES

- The world of carbs is expanding
- Gain awareness of newer carbohydrates and understand how they fit into the spectrum of carbohydrate types.
- Different carbs, different outcomes in the body
 Be able to compare the general molecular structure of different types of carbohydrates and explain how structure affects digestion and absorption.
- Introducing isomaltulose (Palatinose[™]) and its health impacts
- Describe the positive and negative metabolic impact among different types of carbohydrates, including isomaltulose.
- Helping consumers understand sugars and carbs on the label
 Recognize the complexities of educating consumers on added sugars on the label, in light of the unique features of newer carbohydrates.

2

THE WORLD OF CARBS AND SUGARS IS EXPANDING

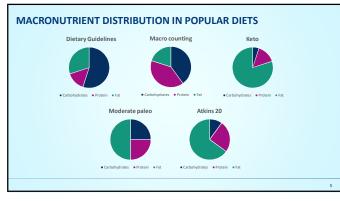
CARBOHYDRATES

Categories:

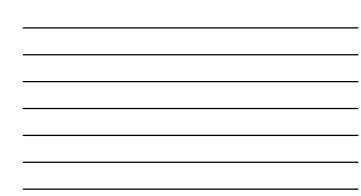
Occur in the form of sugars, oligosaccharides, starches, polyols and fibers

Fuel for the body:

- One of 3 macronutrients for energy supply (along with fat and protein)
- Source of glucose (main energy source for brain and working muscles)


Intake recommendations:

Based on dietary guidance on protein and fat, more than half of the daily energy intake comes from carbohydrates


4

Role in food applications:

Provide nutrition, sweetness, taste, texture, appearance to foods

Class (DP*) and subgroup	Examples		
Sugars (1-2)			
Monosaccharides	Glucose, galactose, fructose, tagatose		
Disaccharides	Sucrose, lactose, trehalose, maltose, isomaltulose		
Oligosaccharides (3-9)			
Maltooligosaccharides	Maltodextrins		
Other oligosaccharides	Fructooligosaccharides (FOS), galactooligosaccharides (GOS), raffinose, stachyose		
Polysaccharides (>9)			
Starch	Amylose, amylopectin, modified starches, resistant starch		
Non- starch polysaccharides	Celluose, hemicelluloses (e.g. arabinoxylans), pectins, inulin, hydrocolloids (e.g. guar), beta-gluca		
Hydrogenated carbohydrates (polyois)			
Monosaccharide type	Sorbitol, mannitol, xylitol, erythritol		
Disaccharide type	Isomalt, lactitol, maltitol		

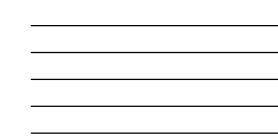
DIFFERENT CARBS, DIFFERENT OUTCOMES

CARBOHYDRATES - THINKING BEYOND CLASSICAL
STRUCTURAL CATEGORIES

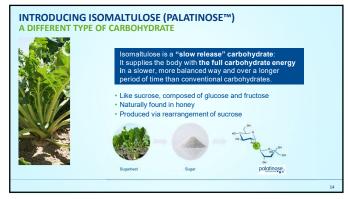
	Isomaltulose	Sucrose
Chemical structure	Disaccharide (DP 2)	Disaccharide (DP 2)
Kind to teeth	Yes	No
Digestible	Yes	Yes
BGR ¹ /GI	Slow /low GI	Fast/ medium to high GI
Colon fermentation	No	No
Energy ² [kcal/g]	4	4
Nutrition labelling	Sugar	Sugar

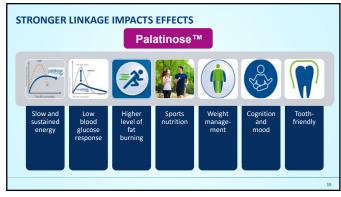
C	
6	


Oligosaccharides (DP 3-9)			
	Maltodextrin	Fructooligosaccharides (FOS)	
Chemical structure	Oligosaccharide (DP 3-9)	Oligosaccharide (DP 3-9)	
and to teeth	No	Yes	
Digestible	Yes	No	
GR1/	Fast /	No BGR	
51	high GI	(GI not applicable)	
Colon fermentation	No	Yes	
nergy ² [kcal/g]	4	2	
Autrition labelling	Carbohydrate	Fiber	

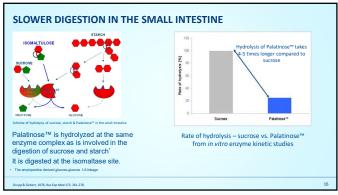

CARBOHYDRATES - THINKING BEYOND CLASSICAL STRUCTURAL CATEGORIES...

	Disaccharides (DP=2)		
	Sucrose	Isomalt	
Chemical structure	Disaccharides (DP=2)	Hydrogenated disaccharide (DP=2)	
Kind to teeth	No	Yes	
Digestible	Yes	Partially	
BGR ¹ / GI	Fast/ medium to high GI	Very low BGR (GI not applicable)	
Colon fermentation	No	Yes- partial	
Energy ² [kcal/g]	4	2	
Nutrition labelling	Sugar	Sugar Alcohol	
cose response or food labelling in the U.S.			

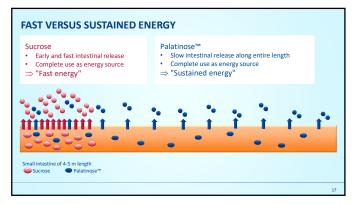




A CLOSER LOOK AT ISOMALTULOSE (PALATINOSE™): A DIFFERENT TYPE OF CARB


SUSTAINED ENERGY LOW BLOOD GLUCOSE RESPONSE HIGHER LEVEL OF FAT BURNING SPORTS NUTRITION WEIGHT MANAGEMENT COGNITIVE AND MOOD

13

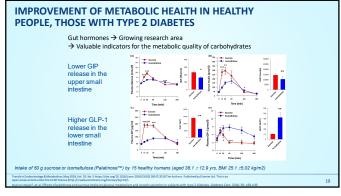


INCRETINS: GUT HORMONES THAT ARE PIVOTAL FOR METABOLIC HEALTH

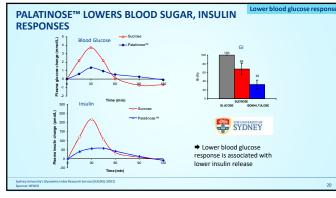
plogy 132(6) 2131-2157

Incretins are a special group of gastrointestinal hormones that stimulate glucose-dependent insulin secretion. Recognized substances are:

GIP

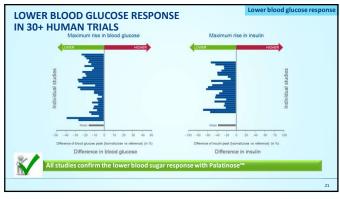

- Glucose-induced insulinotroptic peptide
- Release from K-cells in the upper part of the small intestine
- Stimulated by fast glucose uptake from dextrose or rapidly digested carbs (e.g. sucrose, processed starch)
- Early insulin response to glucose

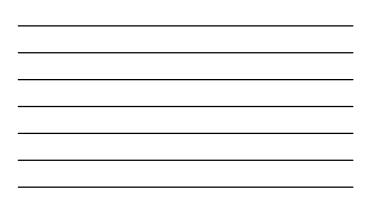
L., Drucker D.J.; (2007) Biology of incretins: GLP-1 and GIP; Gast enterology 2007 1322131-2157DOI: (10.1053/j.gastro.2007.03.

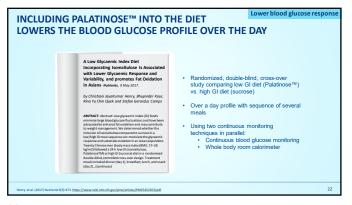

Metabolic regulation after food intake for effective energy storage

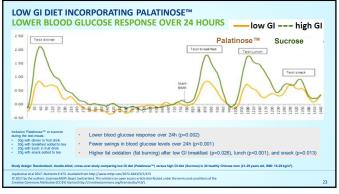
GLP-1

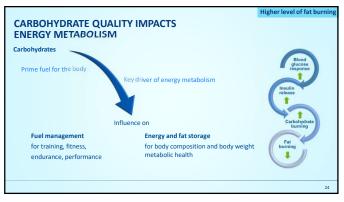
- Glucagon-like peptide-1 Release from L-cells in the lower part of the small intestine and in the colon
- Stimulated by carbohydrates and other nutrients Later insulin response to food
- Signals to inhibit gastric emptying and reduce food intake

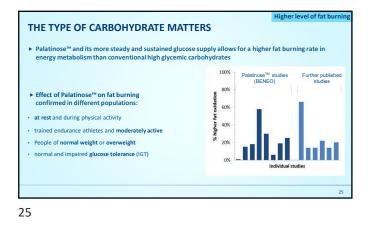


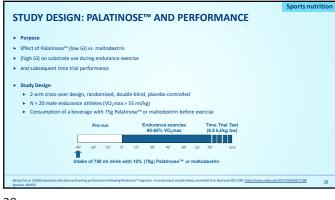


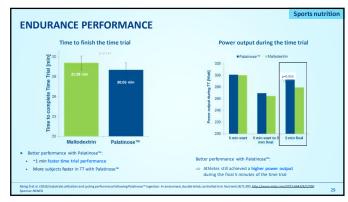


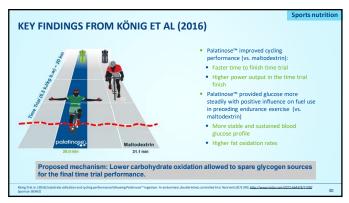




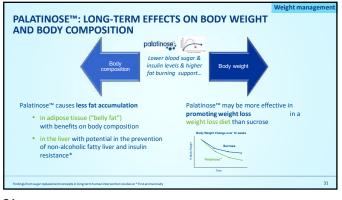


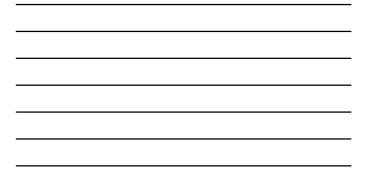


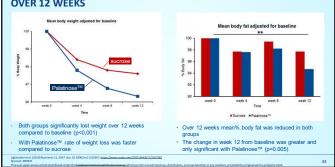


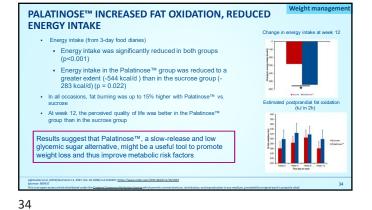






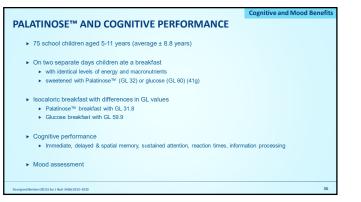


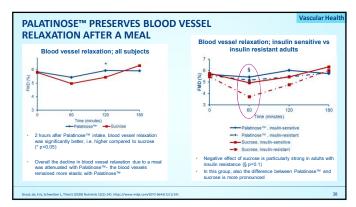


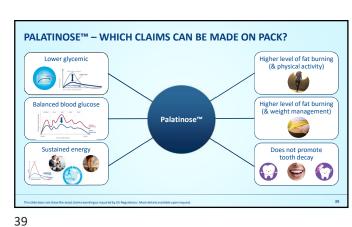


32

PALATINOSE™ REDUCED BODY WEIGHT AND FAT MASS **OVER 12 WEEKS**

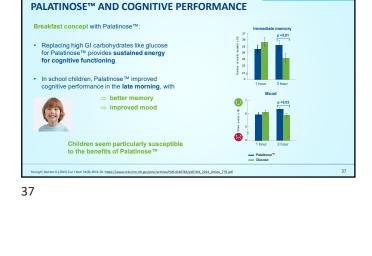

Weight manag

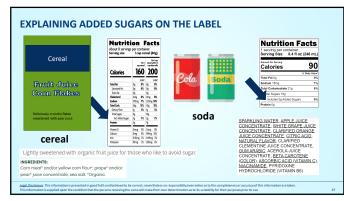



Cognitive and Mood Benefits
COGNITIVE PERFORMANCE

Complete yet "slow release" carbohydrate energy
Low glycemic profile
Lower, smoother
metabolic profile
Palatinose™ may enhance
mental performance and
improve mood

Glucose is the only energy source for the brain and can influence cognitive performance
Children have a higher rate of brain glucose utilization compared to adults- thus more
vulnerable to glucose fluctuations
Not only the intake as such, also the type of carbohydrate can make a difference





Cognitive and Mood Benefits

HELPING CONSUMERS UNDERSTAND SUGARS AND CARBS ON THE LABEL

41

EXPLAINING PALATINOSE™ ON THE LABEL Nutrition Facts 2/3 cup (55 Calories 230 Dally Valu frate 37g 13% ed Sugars 1 24% comaltulose is the only functional carbohydrate which is fully digestible yet slowly released Isomatulose is a low glycemic carbohydrate. This product contains 12 grams per 2/3 cup 12 grams of Added Sugars are isomaltulose (Palatinose¹⁹), a low glycemic carbohydrate. Legal Disclaimer: Th 43

COMMUNICATION, EDUCATION ARE KEY "The Palatinose" chart does a good job at explaining the concept. Communication and education are key to the future success of the ingredient. The chart can help in this effort since people quickly and visually grasp the message." (Consumer Research LATAM, 2017) Athlotos Millenials 64% Lifestyler Kids palatinose. Scientific ÷

TAKE HOME MESSAGES

- The world of carbs is expanding, with newer carbs that differ metabolically from their saccharide-similar counterparts
- ▶ Palatinose™ (isomaltulose), a disaccharide, has a low impact on glycemic response and a sustained energy delivery because of its slow digestion
- As isomaltulose does not behave like an "added sugar" based on its digestion, absorption and metabolic processing, it would be more appropriately counted toward total carbohydrates rather than total or added sugars
- Newer carbohydrates call for an expanded conversation with consumers to help them understand the nuances of sugars and carbs on the label

49

49

