Exclusive Webinar Presentation	
Applying Nutrigenomics in Clinical Practice:	
In Clinical Practice: THE NOTS AND BOLTS	
THE HOTS MID BOLTS	
Earn 1 CPEU	
Presented by Shella Dean, DSc, RDN, LDN, CCN, CDE, IFMCP on Tuesday, June 26, 2018 from 2:00-3:00pm ET	
Chinti Dan, 788. Al Egin Rowerd	
Disclosure	
 Co-founder of the Integrative and Functional Nutrition Academy™ IFNA™ is an Accredited Provider of CPEUs by the CDR IFNA™ offers the IFNCP™, Integrative and Functional Nutrition 	
Certified Practitioner Advanced Practice Credential	
3 key objectives:	
 To define what nutritional genomics is generally about to the extent that we understand at this time 	
2. To identify how our unique genes affect our nutritional needs	

 $3.\,\mathrm{To}$ identify how food affects the way these unique genes of ours express themselves

Human	Genome	Pro	ject
-------	--------	-----	------

- An international research effort begun in the 1980s to map and sequence about 30,000 genes found in the human species and then finally completed in 2003, two years ahead of schedule.
- The outcome?

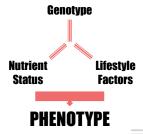
A Deepened Understanding Of:

- Genomics the study of genes and their function
- Epigenetics how environment controls gene activity
 - Nutritional genomics how nutrients affect gene expression
 - <u>Pharmacogenomics</u> how drugs affect gene expression

Nutritional Genomics or "Nutrigenomics":

 Using nutrients (and other natural factors) to serve as "dietary signals" to modify gene expression, the making of proteins, and metabolic function.

Simply put:


Gene x Nutrient

interactions

Gene ~ Environment Interaction

The interplay between genetic inheritance and the environment is a major factor that determines propensity towards disease or health.

NutriGenomics

Diet is the most important environmental factor influencing expression of genetic information because of the constant exposure to food.

JADA. April 2005 pg 589-598.

TIME Magazine

January 18, 2010

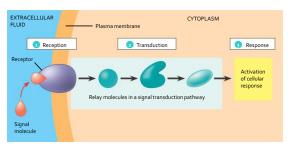
"It is these epigenetic marks that tell your genes to switch on or off, to speak loudly or whisper."

Chromosomes, histones and methyl groups

- Chromosomes → histones that act as spools around which the DNA winds→"epigenetic marks"/methyl groups on the CpG island → gene silencing
- The CpG sites or CG sites are regions of DNA where a cytosine nucleotide occurs next to a guanine nucleotide in the linear sequence of bases along its length.

The Nutrigenomic Paradigm

GENOME: The Story of the Most Astonishing Scientific Adventure of Our Time – The Attempt to Map All the Genes in the Human Body


"Genes in and of themselves do not create disease. Only when they are plunged into a harmful environment unique to the individual do they create the outcome of disease".

Cell Communication—How it Works

Overview of cell signaling

Used with permission: Biology IIth ed, Pearson

Gene	X	Environment
------	---	-------------

PPARy and RXR are transcription factors

Outcome

Used with permission: Ruth Debusk, PhD, RD

Stressed Foods – Are We Eating More Than We Think?

"Obese livestock and unusual fat profiles in farmed fish, meat and eggs may reflect stress phenotypes. Consumers of stressed foods may sense those signals and assume the stressed phenotype. This maladaptive process may promote obesity toward caloric accumulation in the context of energy abundance. Regional tissue accumulation of fat may indicate local tissue stress. Atherosclerosis may result from stress signals that induce sympathetic bias and regional fat accumulation in vessel adventitia. Medications such as neuroleptics and foods such as diet drinks may generate illegitimate signals by mimicking molecules used for energy management..."

Yun AJ, et. al. Med Hypotheses. 2006; 67 (1):3640

Nutrition and Epigenetics

Miki Tokunaga, Toru Takahashi, Ram B. Singh, Fabien De Meester, Donglas W. Wilson Med Epigenet 2013; 1:70-77

NutriGenomic Profile: Genes and Diet		
APOE2	Lower Carbohydrate, Alcohol	
APOE3	Lower calorie, Soluble fiber, Alcohol for women (neutral for men)	
APOE4	Low Fat, No Cholesterol, Soluble Fiber Alcohol for women, No Alcohol for men	
CETP	Alcohol Mederterranean Diet (Low sat. fat; high olive oil, fish, and fiber)	
AGT	Low Salt Diet	
MTHFR	5-methyl THF, Folate, B2, B12, B6	
VDR	Vitamin D	
COL1A1	Calcium- higher dose with more frequent dosing	
IL1-β	Fish Oils, HCl, Nettle Leaf	
IL-6	Fish Oils, Siberian Ginsing, Zinc, NAC, Vitamin E, CLA, beta-sitosterol for acutes DHEA (other steroids, E, P, and T)	
TNF-α	Fish Oils, Nettle Leaf, NAC, Green Tea	

СУРІАІ	Avoid grilled and well-cooked foods Ear Brassica and Allium Foods Use only DIM (no IC3) Resveratrol – Red Wine Do Not Smoke
СУРІВ1	Avoid grilled and well-cooked foods Eat Brassica and Allium Foods Fish Oils IC3 or DIM Resveratrol – Red Wine DHEA
GNB3	Increased risk of metabolic syndrome and obesity
COMT	Adequate B6, B12, folate, magnesium, and methionine to prevent elevated homocysteine Antioxidants to prevent oxidation of pro-carcinogenic 4-OHestrogens
GSTM1	Antioxidants Greatest benefit from Brassica, Allium, or Apiaceous vegetables depending on genotype and gender
GSTP1	Antioxidants
SOD2	Antioxidants
SELE	Decrease NF-κB activation via vitamins E & C, NAC, milk thistle green tea

How Dietary Polyphenols Interfere with Oxidative Stress-triggered Signaling

- Oxidative stress induces inflammation by triggering— NF-xB activation (a major proinflammatory cytokine) which affects a wide variety of cellular signaling processes leading to generation of inflammatory mediators such as the expression of pro-inflammatory genes such as:
 II-1β
 II-8
 TNFα
- On the flip side, to counter the effects of oxidative stress, the cells are also going to express \rightarrow protective antioxidant genes such as MnSOD (Mn super oxide dismutase).
- Polyphenols and flavonoids inhibit pro-inflammatory gene expression by:
 1. downregulating proinflammatory cytokines such as NF-xB and "silencing" these genes via histone deacetylation so the DNA condenses and does not allow expression of the gene.

 2. expression of antioxidant genes are upregulated.

Food	Has	"Perso	onality"
------	-----	--------	----------

- In a study that put subjects on two different diets of exactly the same number of calories and carb grams, the diet that contained high glycemic carbs had in increase in inflammatory markers. (via needle biops; they did a gene array on subject fat tissue and found an upregulation of inflammatory and stress genes)
- "Dietary carbohydrate modification with rye and pasta (\$\sqrt{GI}\$) vs oat, wheat
 and potato (\$\gammaGI\$) differentially modulates the gene expression profile in
 abdominal subcutaneous adipose tissue, even in the absence of weight
 loss".

Kallio, P. Am J Clin Nutrition May 2007; 85: 1417-27.

FOOD IS INFORMATION!

- Food has the ability to act as signals or molecules of informational messages that your genes then translate into proteins.
- What kind of messages do you want to expose your genes to?
 - Messages of health?
 - Messages of disease?

Messages of disease vs. Messages of health OMEGA-3 SUPPORTS HEALTHY IMMUNE RESPONSE

COMEGA-3 SUPPORTS HEALTHY IMMUNE RESPONSE

WHITE THE PROPERTY OF THE PROPERTY

Standard American Diet = SAD

- Refined sugar
- Refined flour
- Preservatives
- Additives
- Pesticides
- Hormones
- Trans fats · Animal protein
- Caffeine
- Alcohol
- Artificial chemicals/sweeteners/fats

Genetic "Language"

- The genetic code is specified by the four nucleotide "letters":
 - A (adenine),
 - · C (cytosine),
 - T (thymine),
 - G (guanine).
- What happens when a single nucleotide, such as an A, replaces one of the other three nucleotide letters: C, G, or T???

Single Nucleotide Polymorphisms (SNPs)

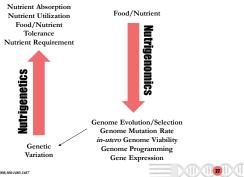
ATGGTAAGCCTGAGCTGACTT ATGGTAAACCTGAGTTGACTT SNP SNP

- A SNP (aka gene variant) that is caused by a change in a single nucleotide.
- Any protein can have a SNP! important!!

Single Nucleotides Polymorphisms - SNPs

- Single base mutation in DNA
- · Most simple form of genetic polymorphism
- SNP's occur in greater than 1% of the population. We all have millions (about 3) of SNP's!
- There are 15 million locations where SNP's can occur/occur 0.5-10 per every 1000 base pairs
- SNPs are associated with almost all diseases.

Source: DeBusk, R. Genetics: The Nutrition Connection. 2003


$Diet \rightarrow Genes \rightarrow Metabolism \rightarrow Function$

Key Points:

- \bullet Everyone has the same genes in slightly different versions, called "gene variants" or "SNPs".
- It's these variations that distinguish one person from another.
- Different variations (gene variants) lead to different metabolism and function between individuals (+,-,N) due to different nutrient requirements and effects on gene variants.

Nutrigenetics vs. Nutrigenomics

Stover, P et al. JADA. 2008;108:1480-1487

MTUED		
<u>MTHFR</u> An Example Of A Com	mon SNP	
3 possible outcomes:		
-/- Normal or "wild-type"		
-/+ Heterozygous for the SNP		
+/+ Homozygous for the SNP		
The 5 Maior Methyl	lation Pathway Cycles	
ino o major motily	ation i atima, oyoloo	
Variations W	ithin V ariations	
MTHFR -low penetrance, high frequency variation	Sickle Cell Anemia – high penetrance, low frequency	
Sickle cell	Normal red blood cell	
Abnormal hemoglobin	Normal hemoglobin	
	Sirkle cells	
	Sickle cells blocking blood flow	

Gene	e Polymorp	hism			
		ed of 2 alleles which ozygous ~ AA or aa			
How		e more than 2 allele	variants {polymorphisms	s} ~	
	: APO E2, APO E3, I a person's APO E2/E2, E2/E3, E2	E genotype may be:			
6 d	E3/E3, E3/E4, E4 ifferent genotype				
ApoE	4 gene, Alz	heimer's & 1	ype 3 Diabetes		
• Alz	neimer's ("Type 3 theimer's beta-amylo		x nteracts with and is degraded		
• Ch	insulin degrading en eck <u>fasting</u> insulin (3 E clears both insulir		ues in the brain		
	Percentage of A	PO E Genotypes in tl	he General Population		
	Apo E 2 Apo E 3	2/3	10%		
	Apo E 4	4/2	2% 18%		
		4/4	5%		
Alzhe	imer's Dise	ase Is Type 3	Diahetes –		
Evide	nce Review				
Volume .	2 Issue 6, Novembe	r 2008			
ref.	lects the fact that ectively involves	the brain and has n	orm of diabetes that nolecular and		
bio	chemical feature	es that overlap with I.	both type 1 diabetes		
	J	Journal Diabetes Scien	nce & Tech, 2008	1	

Multi-Genetic Disease/Genes express in "families"	
More often, multiple polymorphisms and/or haplotypes interact to: → modify nutrient demand and metabolism	
 ■ affect enzyme production and efficiency → alter epigenetic regulatory mechanisms 	
 cytokines, hormones, sensor molecules and transcription factors Ppars, MAP kinases, NF-Kappa-B modulate expression of other genes 	
 further alters metabolism and regulatory elements change responses to environmental factors nutrition, exercise, xenobiotics 	
Leads to development of disease phenotype Hypertension, coronary heart disease, Type 2 diabetes	
High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding	
affinity (increaded K): relevance to genetic disease and polymorphisms	
Bruce N. Ames, Han Elson-Schwab, and Eli A Silver	
"Our analysis of metabolic disease that affects cofactor binding, particularly as a result of polymorphic mutations, may present a novel rationale for high dose vitamin therapy, perhaps hundreds of times the normal dietary reference intake in some cases."	
, AJCN. 2002/75484-698.	
Cone nutrition for onrume nelumerablem	
Gene-nutrition for enzyme polymorphism Many polymorphic gene-regulated enzymes display exhibit reduced cofactor or coenzyme binding	
 About 30% of the 1000 disease phenotypes related to SNP polymorphisms reportedly exhibit reduced specific enzyme binding At least 50 diseases have been shown to respond to high-dose nutrient 	
supplements • Vitamin B1, Vitamin B2, Vitamin B3, Vitamin B5, Vitamin B6 • Vitamin B12, Folic acid, Biotin	
Vitamin E, Vitamin K, Vitamin D Lipoic acid, Carnitine, SAMe, Tetrahydrobiopterin Amino acids: alanine, serine, glycine, isoleucine	
Minerals: zinc, copper, selenium, potassium Ascorbic acid	
cs et al, 2002	

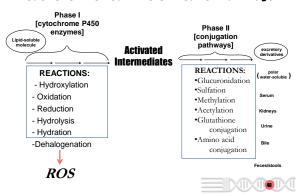
Ruth Debusk, Ph.D, R.D. It's Not Just Your Genes. BKDR Publications,	P	
"Even if you carry gene variants that mark you as being susceptible to a		_
complex disease, the variants alone won't make you ill. They do increase the risk that a disease will develop <u>in</u>		
the presence of certain behaviors"		
	100	
		_
Mathylation	MP.	 _
Methylation s	NFS	
CBS – Cystathionine Beta-S	ynthase	 _
 CBS initiates the trans-sulfuration pathway, ocystathionine and its downstream metabolites 		 _
• One of the most important methyl cycle det	fects	
C699T snp upregulates CBS 10-fold		
• Excess Ammonia production		 _
• Excess Sulfite/Sulfate production		
ice: Pradora et al, 2006		

Diseases Related to P	Poor Folate Metabolism		
Spina bifida and other NTDs Depression, Anxiety, OCD			
• Alzheimer's			
Cognitive Decline Heart Disease and Stooler			
Heart Disease and Stroke Elevated homocysteine			
• Cancer		-	
Poor detoxification			
MTHFR Research	 Design: Patients with CRC (n = 196) and healthy controls (n = 200) matched for age and sex were evaluated for intake of methyl-donor nutrients and the 3 	-	
American Journal of Clinical Nutrition	polymorphisms. • Results: Except for folate intake, which was significantly		
Vol. 88, No. 5, 1413-1418, November 2008	lower in patients (P = 0.02), no differences were observed in the dietary intake of other methyl-donor nutrients between groups. High intake of folate (>406.7 µg/d) was		
ORIGINAL RESEARCH COMMUNICATION	associated with a significantly lower risk of CRC (odds ratio: 0.67; 95% CI: 0.45, 0.99). The A2756G MTR		
Risk of colorectal cancer associated with the C677T polymorphism in 5,10- methylenetetrahydrofolate reductase in	polymorphism was not associated with the risk of developing CRC. In contrast, homozygosity for the		
Portugue methyl- Catarin "High intake of folate			
Susana Fidalgo associated with a sign:	gables		
· Backgr involved MTHFR variant (TT)	articipants for the C677T) showed a 3.0-fold ients was ozygous m, but a		
methyl-r colorect increased risk of CRC	ved for		
methylene terranyerororate reductases, 127,500 MTR (methionine synthase), and C1420T SHMT	Conclusion: These results show an association between		
(serine hydroxymethyltransferase)] with the intake of methyl-donor nutrients in CRC risk.	the C677T MTHFR variant and different folate intakes on risk of CRC.		
	THFR gene to the causal		
pathway for depressi cognitive impairment	UII, AIIXICIY AIIU t in later life		
	t iii latgi iiig.		
Neurobiol Aging Almeida OP, Flicker L, Lautenschlager NT, Leedm	nan P, Vasikaran S, van Bockxmeer FM.		
2005 Feb;26(2):251-7.			
"Subjects with the TT gen	notype have higher		
homocysteine levels and n	may be particularly prone to as a result of high plasma Hcy		
and dysfunction of methy	lation metabolic pathways		
critical to the synthesis of serotonin."	noradrenaline and	•	
PMID: 15582752 [PubMed - indexed for MEDLINE]			

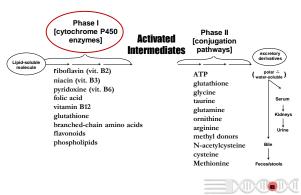
The 677 C/T MTHFR polymorphism is associated with essential hypertension, coronary artery disease, and higher homocysteine levels.	
Arch Med Res. 2008 Jan;39(1):125-30. Epub 2007 Oct 15. Ilban N, Kunksu M, Kaman D, Ilban N, Ozboy Y.	
"The TT genotype of the 677C/T MTHFR polymorphism is associated with EH and CAD. In addition, TT genotypes had higher plasma Hcy levels in CAD patients compared with CC and CT	
genotypes."	
Agouti Mice Randy Jirtle, 2000 Duke University	
With no more than a change in diet, laboratory agouti mice were prompted to give birth to young that differed markedly in appearance and disease susceptibility.	
Mexican Pima Indians: Now & Then	
mgalgan Pinia mulans: NUW & Inen	

"Thrifty Gene" Theory – The Survival Advantage

- Those who have "thrifty genes" can survive in conditions of famine and scarcity because their genes allow them to build up fat during times of "feasting" or times of plenty so as to avoid starvation during famine.
- With a shift to the SAD diet, food has become abundant year round. So the same genes that saved our ancestors from starvation now put us at a disadvantage because they are exposed to "too much of too little". That is too many calories of very little nutritional quality.



Diseases Related to Poor Folate Metabolism


- Spina bifida and other NTDs
- Depression, Anxiety, OCD
- Alzheimer's
- Cognitive Decline
- Heart Disease and Stroke
- Elevated homocysteine
- Cancer
- Poor detoxification

Reactions Involved in Detoxification Pathways

Supportive Nutrients for Detoxification Pathways

Genetic factors contribute to the ability to clear toxins

Interpatient variability: genetic predisposition and other genetic factors.

J Chin Pharmacol
West WT., Knight EM, Pradban S, Hinds TS.
1997;37(7):635-48.

"Research identifies significant genetic variation in CYP450 Phase I enzyme expression in humans. These variations have a significant impact on the patients ability to clear toxins."

CYP2D6 Genotyping as an Alternative to Phenotyping for Determination of metabolic Status in a Clinical Trial Setting

AAPS PharmSci. 2000;2(4):E33.

McElroy S1, Sachse C, Brockmoller J, Richmond J, Lira M, Friedman D, Roots I, Silber BM, Milos PM.

"The research objectives of this study were to assess the utility of cytochrome P450 2D6 (CYP 2D6) genotyping as a predictor of poor metabolizer status. Our results suggest that CYP2D6 genotyping is a valid alternative to traditional phenotyping in a clinical trial setting and in some cases may be better".

Samnle Re	port may in	clude				
	por tring in					
• CYP1A1				•		
• CYP1B1 • CYP2A6						
• CYP2C9						
• CYP2C19				•		
• CYP2D6 • CYP3A4						
G11 <i>51</i> 11						
		=				
COMT – Cat	echol O-me	thyl Transfe	erase			
		_				
Result	Gene	SNP	Affects	•		
_	COMT	Location V158M	Linnan/Cart			
+ -	COM1	V 136IVI	Liver/Gut			
				•		
		netic variation - "wil				
		ne genetic variation – variaton – Homozy		itive		
				•		
		=	5			
COMT - Est	rogen meta	bolism		-		
 E1 – Estrone 2, 4, 16 estrone 	s			•		
• E2 – Estradiol • E3 – Estriol						
• E1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	drowestrops \ \	→2/4 methyoxyest	trana			
• E1 → → → 2/4 III	ydroxyestrone 🥕		trone	•		
	Phase 2 –	COMT (Mg depe	endent)			
		_				

Glutathione s-transferase

Result	Gene	Location	Affects
Present	GST M1	1p13.3	Liver/Kidney
	GST P1	I105V	Brain/Skin
-+	GST P1	A114V	Brain/Skin

Key:

- Neither chromosome carries the genetic variation "wild type"
- + One chromosome (of two) carries the genetic variation Heterozygous positive
- + + Both chromosomes carry the genetic variaton Homozygous positive

SOD – Superoxide Dismutase

Result	Gene	SNP Location	Affects
	SOD1	G39A	Cytosol
	SOD1	A4V	Cytosol
+ -	SOD2	A16V	Mitochondria

Kev-

- - Neither chromosome carries the genetic variation "wild type"
- + One chromosome (of two) carries the genetic variation Heterozygous positive
- + + Both chromosomes carry the genetic variaton Homozygous positive

4th Leading Cause Of Death Is...

- According to article by JAMA an estimated 2,216,000 (1,721,000 to 2,711,000) hospitalized patients had serious adverse drug reactions (ADRs) and 106,000 (76,000 to 137,000) had fatal ADRs, making these reactions between the fourth and sixth leading cause of death.
- Today that statistic is being quoted as closer to the third leading cause of death.
- This means that patients that received the correct doses of the correct drugs administered by the proper health care professional still had so many ADR's that it is a leading cause of DEATH!

Source: JAMA. April 15, 1998;279(15):1200-5

- "Any factor that alters pharmacokinetics or pharmacodynamics could be responsible for adverse drug events."
 - Gladson. Pharmacology for Physical Therapists, pg 47
- What does this mean?
- Biochemical Individuality and Genetic Uniqueness

 R					
		\times I	58	ПXII	
	0	/ 🔍			

Glutathione S-transferase M1, P1, T1

Gene	What Does the Gene Do?	Genetic Variation Detected	Do You Have the Variation?	What Doe	s This Mean For You?
GSTM1	The GSTM1 gene is involved in the second phase of detoxification, helping to remove toxins from the body through sweat and unine.	Deletion (Del)	Yes Your Result: (deleted)	Detoxification:	You do not have a working copy of the GSTM1 gene, which means that you may have reduced detoxification capacity.
GSTP1	The GSTP1 gene is another gene involved in the second phase of detoxification.	He 105Val Other names for this variation: 313 A>G, Rs1695	No Your Result: (A,A)	Detoxification:	You do not have SNP at position 313 of the GSTP1 gene- no gene specific recommendations required
		Ala114Val Other names for this variation: 341 C>T, rs1138272	No Your Result: (C,C)	Detoxification:	You do not have a SNP at position 341 of the GSTP1 gene- no gene specific recommendations required.
GSTT1	The GSIT1 gene is also involved in the second phase of detoxification	Deletion (Del)	Yes Your Result: (Deleted)	Detoxification:	You do not have a working copy of the GSIT1 gene, which means that you may have reduced detoxification canacity.

How Do You Evaluate/Interpret This? Look At The Big Picture!

Who? When?	What? Why?
The Patients	Story!

- Pattern analysis
- · Looking at nutrigenetic trends
- Patient diagnosis
- Family history
- Clinical symptoms
- Traditional blood work
- Urine chemistries
- Functional labs
- · Readiness to change
- Financial resources

Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals

Rai Hai Lin

"Regular consumption of fruit and vegetables is associated with reduced risks of cancer, cardiovascular disease, stroke, Alzheimer disease, cataracts, and some of the functional declines associated with aging.... We propose that the additive and synergistic effects of phytochemicals in fruit and vegetables are responsible for their potent antioxidant and anticancer activities, and that the benefit of a diet rich in fruit and vegetables is attributed to the complex mixture of phytochemicals present in whole foods."

Patient comes to see you...

- 61 y.o. happily married female
- 2 adult children, professionals and 2 Eats out regularly for lunch and grandchildren
- Attorney, definitely Type A
- Diffuse family hx of CA, no clear pattern or type
- Overweight, BMI 29
- hsCRP↑
- Most parameters WNL but on high side of normal:
 - Cholesterol, LDL, slightly low
 - BG
 - BP
- Rx: HRT, zolpidem prn and tagamet prn

- Short on time
- dinner
- Diet high in fat and glycemic load, low in fiber
- · Likes fruits and vegetables but doesn't take time to prepare
- Drinks socially
- Exercises occasionally/inconsistent
- HER GOALS:

Make changes to reduce risk of developing cancer, increase energy, weight loss

Nutrigenetic A	nalysis		
Antioxidant Defe	nse	Detoxificat	tion, Phase I
SOD2 — SOD3 +	_	CYP1A1 CYP1A2	+ +
Methylation		Detoxificati	ion, Phase II
MTHFR +	_	GSTM1 GSTP1	+ +
-= Usual +	- = Variant	=	
utrigenetic Ana	alysis		
Cancer Risk Factor	Gene	SNPs	Genotype
Detoxification, Phase I	CYP1A1	2453 A>G	GG
Detoxilication, Friase i	CYP1A2	-163 A>C	AC
Deterification Phase II	GSTM1	Ins/Del	Del/Del
Detoxification, Phase II	GSTP1	313 A>G	AA
Antioxidation	SOD2	-28 C>T	СС
Antioxidation	SOD3	670 C>G	CG
Methylation	MTHFR	677 C>T	СТ
What W			
Th	is Pati	ent Be?	
		=	

Basic Nutrition	n Sunnort		
• Lean protein, minimu	oased (organic) (high fat yields lipid peroxides) ım well-cooked/grilled meats nethylated B vitamin supplements		
Antioxidant-rich foods/su Mineral-rich foods/su	applements		
	gut microflora of appropriate mix		
High fiber: soluble arOmega-3 fats (high qCalorie and carb cont	uality)		
		XI	
Basic Nutrition	1 Support (cont.)		
Maximize Phase II act	ivity		
2 major approaches: ↑ intake of polyph	enols, especially flavonoids		
• ↑ intake of glucos	inolates		
 Whole foods st 	nch as cruciferous vegetables ds such as Brocco Sprouts and Brassica teas		
		XI	
Best Food Cho	ices		
Antioxidants	Fruit/vegetable-rich foods		
B2, B3, B6, B12, folate	Whole grains, oranges/juice, dark green leafy vegetables, dried beans and peas		
Cruciferous/thiol rich vegetables	Broccoli, Brussels sprouts, cabbage, cauliflower, kale, watercress		
Fiber	Dried beans/peas, fruits, vegetables, oats, barley, brown rice, whole grains		
Flavonoid-rich	Red/purple/black fruits/juice, tomatoes, green/black teas, red wine, garlic, onions		

Mineral-rich

Omega-3 fats

Nuts, whole grains, green leafy vegetables

Cold-water oily fish, ground flax, omega-3 enriched eggs, certain oils

Putting It All Together	
Diet • Calorie-controlled, low glycemic load	
Organic, plant-based whole food diet Lots of polyphenol-rich fruits, vegetables, soy	
 Work on incorporating cruciferous/allium veggies to ↑ phase II 	
and support estrogen metabolism • Reduce/eliminate caffeine, smoked/chargrilled protein, nitrites	
Probiotics and prebiotics	
Increase omega-3s to reduce inflammation Consider dietary supplements to support various strategic targets	
Lifestyle	
Reduce weight to desirable level (esp. inflammation) Incorporate regular physical activity	
Manage stress—numerous suggestions here, including making	
time for friends, down time just for her • Avoid tobacco, exhaust fumes	
Toxin-free cleaning products, volatile organics	
	-
Some Of The Labs/Companies That Offer	
Nutrigenetic Testing	
Those I've worked with: Genova Diagnostics – gdx.net	
• Berkeley Heart Panel → Quest Labs	
Gene SNP→ Market America	
 23andMe → National Genomics, Lab Corp, available DTC. No longer offers health related genetic reports; only uninterpreted 	
raw genetic data and ancestry- related genetic reports.	
23andMe Gene app still available https://livewello.com/23andme	
• DNAlysis	
Genoma International	
Nutrigenomix	
So What We See Is That Nutrigenetic Testing:	
oo maa maa oo to maa maangonodo tooding.	
• Can explain/confirm patient diagnosis, symptomology, and other data	
(ie labs) that you already have. It's just one tool in your toolkit • Identifies the patients "weakest links"	
Can be used as a "behavioral tool" to help with patient compliance	
Can be very useful in the prevention of ADR's and many useful drug	
applications (i.e. chemo)	
Key NGX panels include: Methylation	
Detoxigenomic	
Cardiovascular	-

Take Home Message	
✓It's not about any one SNP or single magic food	
✓ Nutrigenetic testing is just one piece of the patients story to help you build a more solid nutrition care plan	
✓ Aim for pattern recognition and trend analysis	
✓ Avoid determinant statements about the influence of gene variants on disease outcome.	
Image crotii: Reginu Brigelius-Flobe, Wiley-YCH	
Other resources and training for the 21st	
Other resources and training for the 21st century Integrative Practitioner	
Dietitians in Integrative and Functional Medicine Certificate of Online Training	-
• www.integrativerd.org	
Integrative and Functional Nutrition Academy Advanced Practice	
Credential - IFNCP TM • www.IFNAcademy.com	
S turner and the formation	
INTEGRATIVE AND FUNCTIONAL NUTRITION ACADEMY*	
Recommended References	
 Nielsen D., El-Sohemy A. A Randomized Trial of Genetic Information for Personalized Nutrition. Genes Natr. 2012; 7(4):559-566. 	
 Szarc vel Szic, et al. Nature or Nurture: Let food be your epigenetic medicine in chronic inflammatory disorders. Biochemical Pharmacology. 2010; 80:1816-1832. 	
 DeBusk RM. Diet-Related Disease, Nutritional Genomics, and Food and Nutrition Professionals J Am Diat Asso. 2009;109(3):410-413. 	
 Boehl T. Emerging Science Raises Questions: What to Tell Your Clients about Nutritional Genomics. J Am Din Asine. 2007;107(7):1094-1096. 	
 DeBusk RM, Fogarty CP, Ordovas JM, Komman KS. Nutritional Genomics in Practice: Where Do We Begin? J Am Diet Assoc. 2005;105:589-598. 	
Other web based references • ncbi.nlm.nih.gov/genome • edegov/genomics	

It's not just your genes,

it's what you bathe them in over a lifetime!

Image credit with permission: Ruth DeBusk, PhD, RL

More questions? Contact me via www.IFNAcademy.com

Credit Claiming

You must complete a brief evaluation of the program in order to obtain your certificate. The evaluation will be available for one year; you do not need to complete it on June 26, 2018.

Credit Claiming Instructions:

- Go to <u>CE.TodaysDietitian.com/Nutrigenomics</u> <u>OR</u> log on to <u>CE.TodaysDietitian.com</u>, go to "My Courses" and click on the webinar title.
- 2. Click "Take Course" on the webinar description page.
- Select "Start/Resume Course" to complete and submit the evaluation.
- 4. Download and print your certificate.

